Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers.
If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order).
The replacement must be in-place, do not allocate extra memory.
Here are some examples. Inputs are in the left-hand column and its corresponding outputs are in the right-hand column.
Analysis:If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order).
The replacement must be in-place, do not allocate extra memory.
Here are some examples. Inputs are in the left-hand column and its corresponding outputs are in the right-hand column.
1,2,3
→ 1,3,2
3,2,1
→ 1,2,3
1,1,5
→ 1,5,1
There's a classic algorithm on Wiki of finding the next string permutation in lexicographical order. There are four steps:
1) Find the largest index k where num[k]<num[k+1]
2) Find the largest index l where l>k and num[l]>num[k]
3) Swap num[k] and num[l]
4) Reverse num[k+1 : len], where len is the length of the given string
To see how this algorithm works, scratching a simple example on your own will help.
For our purpose, in addition to step 4, if there's no possible larger string found, we wrap up to find the smallest string by reversing the entire string.
Code:
class Solution { public: void nextPermutation(vector<int> &num) { int len=num.size(); if (len<=1) return; // step 1 int k=0; for (int i=0; i<len-1; i++) if (num[i]<num[i+1]) k=i; // step 2 int l=0; for (int i=0; i<len; i++) if (i>k && num[k]<num[i]) l=i; // step 3 - swap swap(num, k, l); //step 4 - reverse k==l ? reverse(num.begin(), num.end()):reverse(num.begin()+k+1, num.end()); } void swap(vector<int> &num, int a, int b) { int t=num[a]; num[a]=num[b]; num[b]=t; } };
No comments:
Post a Comment